Multiagent Deep Reinforcement Learning With Demonstration Cloning for Target Localization
Author:
Affiliation:
1. Concordia Institute for Information Systems Engineering, Concordia University, Montreal, QC, Canada
2. Department of Electrical Engineering and Computer Science and the Center of Cyber Physical Systems, Khalifa University, Abu Dhabi, UAE
Funder
Fonds de Recherche du Québec—Nature et Technologies
Natural Sciences and Engineering Research Council of Canada
Department of National Defense [Innovation for Defence Excellence and Security (IDEaS)]
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Subject
Computer Networks and Communications,Computer Science Applications,Hardware and Architecture,Information Systems,Signal Processing
Link
http://xplorestaging.ieee.org/ielx7/6488907/10194321/10083192.pdf?arnumber=10083192
Reference39 articles.
1. Contrasting centralized and decentralized critics in multi-agent reinforcement learning;lyu;Proc 20th Int Conf Auton Agents MultiAgent Syst (AAMAS),2021
2. The Lost Source, Varying Backgrounds and Why Bigger May Not Be Better
3. Emergent tool use from multi-agent autocurricula;baker;Proc Int Conf Learn Rep (ICLR),2020
4. A Sampling-Based Bayesian Approach for Cooperative Multiagent Online Search With Resource Constraints
5. Overcoming Exploration in Reinforcement Learning with Demonstrations
Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Blockchain-based crowdsourced deep reinforcement learning as a service;Information Sciences;2024-09
2. An Active Olfaction Approach Using Deep Reinforcement Learning for Indoor Attenuation Odor Source Localization;IEEE Sensors Journal;2024-05-01
3. Multi-Behavior Multi-Agent Reinforcement Learning for Informed Search via Offline Training;2024 20th International Conference on Distributed Computing in Smart Systems and the Internet of Things (DCOSS-IoT);2024-04-29
4. Overcoming cold start and sensor bias: A deep learning-based framework for IoT-enabled monitoring applications;Journal of Network and Computer Applications;2024-02
5. Blockchain-Based Crowdsourced Deep Reinforcement Learning as a Service;2024
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3