A Driving Fatigue Feature Detection Method Based on Multifractal Theory
Author:
Affiliation:
1. School of Mechanic Engineering, Northeast Electric Power University, Jilin, China
2. College of Electrical Engineering, Yanshan University, Qinhuangdao, China
Funder
National Natural Science Foundation of China
Northeast Electric Power University
Jilin City Science and Technology Bureau
Central Guidance on Local Science and Technology Development Fund of Hebei Province
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Subject
Electrical and Electronic Engineering,Instrumentation
Link
http://xplorestaging.ieee.org/ielx7/7361/9906561/09869417.pdf?arnumber=9869417
Reference80 articles.
1. Dynamic driver fatigue detection using hidden Markov model in real driving condition
2. Deep Gaussian Mixture-Hidden Markov Model for Classification of EEG Signals
3. Hidden Markov Models Used for the Offline Classification of EEG Data - Hidden Markov-Modelle, verwendet zur Offline-Klassifikation von EEG-Daten
4. Classification of multichannel EEG patterns using parallel hidden Markov models
5. Application of music in relief of driving fatigue based on EEG signals
Cited by 102 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. EEG emotion recognition using EEG-SWTNS neural network through EEG spectral image;Information Sciences;2024-10
2. Machine-learning classification with additivity and diverse multifractal pathways in multiplicativity;Physical Review Research;2024-09-10
3. Research on low-power driving fatigue monitoring method based on spiking neural network;Experimental Brain Research;2024-08-23
4. Review on design of real-time posture monitoring system for the cervical region;Ergonomics;2024-07-31
5. Attention-Guided Multiscale Convolutional Neural Network for Driving Fatigue Detection;IEEE Sensors Journal;2024-07-15
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3