A Mask Self-Supervised Learning-Based Transformer for Bearing Fault Diagnosis With Limited Labeled Samples
Author:
Affiliation:
1. School of Automation, Guangdong Polytechnic Normal University, Guangzhou, China
2. China Petroleum and Chemical Corporation, Guangzhou Branch, Guangzhou, China
Funder
Innovative Team Project of the Ordinary University of Guangdong Province
Guangdong Special Project in the Key Field of Artificial Intelligence for the Ordinary University
Guangzhou Key Laboratory Construction Project
Guangzhou Key Research and Development Project
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Subject
Electrical and Electronic Engineering,Instrumentation
Link
http://xplorestaging.ieee.org/ielx7/7361/10124342/10098752.pdf?arnumber=10098752
Reference37 articles.
1. A Time Series Transformer based method for the rotating machinery fault diagnosis
2. A novel bearing fault diagnosis model integrated permutation entropy, ensemble empirical mode decomposition and optimized SVM
3. A novel time–frequency Transformer based on self–attention mechanism and its application in fault diagnosis of rolling bearings
4. A fault diagnosis method for rolling element bearings based on ICEEMDAN and Bayesian network
5. Research on bearing fault diagnosis method based on transformer neural network
Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Real-Time Monitoring of Illegal Logging Events Using Intelligent Acoustic Sensors Nodes;IEEE Sensors Journal;2024-09-01
2. An Unsupervised Framework Based on Dual-Domain Contrastive Learning and Tri-Indicator Joint Alarm Strategy for Early Fault Detection of Bearing;IEEE Sensors Journal;2024-08-15
3. Fast-Activated Minimal Gated Unit: Lightweight Processing and Feature Recognition for Multiple Mechanical Impact Signals;Sensors;2024-08-14
4. An intelligent compound fault diagnosis method using generalized zero-shot model of bearing;Measurement Science and Technology;2024-06-28
5. Interpretable domain adaptation transformer: a transfer learning method for fault diagnosis of rotating machinery;Structural Health Monitoring;2024-05-23
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3