Dual-Concentrated Network With Morphological Features for Tree Species Classification Using Hyperspectral Image
Author:
Affiliation:
1. School of Information and Electronics, Beijing Institute of Technology, Beijing, China
2. Institute of Forest Resource Information Techniques, Chinese Academy of Forestry, Beijing, China
Funder
National Natural Science Foundation of China
China Postdoctoral Science Foundation
National Key Research and Development Program of China
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Subject
Atmospheric Science,Computers in Earth Sciences
Link
http://xplorestaging.ieee.org/ielx7/4609443/9656571/09860044.pdf?arnumber=9860044
Reference42 articles.
1. A Novel Endmember Bundle Extraction and Clustering Approach for Capturing Spectral Variability Within Endmember Classes
2. Diverse Region-Based CNN for Hyperspectral Image Classification
3. Spectral–Spatial Feature Extraction for Hyperspectral Image Classification: A Dimension Reduction and Deep Learning Approach
4. Deep Feature Extraction and Classification of Hyperspectral Images Based on Convolutional Neural Networks
5. Comparison of support vector machine, random forest and neural network classifiers for tree species classification on airborne hyperspectral APEX images
Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Cross Modal Few Shot Learning for Tree Species Classification Using Airborne Hyperspectral Images;IGARSS 2024 - 2024 IEEE International Geoscience and Remote Sensing Symposium;2024-07-07
2. Research on Classification of Grassland Degeneration Indicator Objects Based on UAV Hyperspectral Remote Sensing and 3D_RNet-O Model;Sensors;2024-02-08
3. Using UAV LiDAR Intensity Frequency and Hyperspectral Features to Improve the Accuracy of Urban Tree Species Classification;IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing;2024
4. Texture-Aware Self-Attention Model for Hyperspectral Tree Species Classification;IEEE Transactions on Geoscience and Remote Sensing;2024
5. ResMorCNN Model: Hyperspectral Images Classification Using Residual-Injection Morphological Features and 3DCNN Layers;IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing;2024
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3