Hyperspectral Image Classification Based on Unsupervised Regularization
Author:
Affiliation:
1. College of Computer Science and Technology, Xidian University, Xi'an, China
2. AVIC Xi'an Aeronautical Computing Technology Research Institute, Xi'an, China
Funder
National Natural Science Foundation of China
Key Research and Development Program of Shaanxi Province
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Subject
Atmospheric Science,Computers in Earth Sciences
Link
http://xplorestaging.ieee.org/ielx7/4609443/9973430/10035838.pdf?arnumber=10035838
Reference48 articles.
1. Automatic diagnosis of melanoma using hyperspectral data and GoogLeNet
2. Dual-Channel Convolution Network With Image-Based Global Learning Framework for Hyperspectral Image Classification
3. Hyperspectral Imagery Classification Using Sparse Representations of Convolutional Neural Network Features
4. Global Spatial and Local Spectral Similarity Based Sample Augment and Extended Subspace Projection for Hyperspectral Image Classification
5. Fusion of machine vision technology and AlexNet-CNNs deep learning network for the detection of postharvest apple pesticide residues
Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Understanding Satellite Image Processing and Black Box Models with Ante-Hoc and Post-Hoc Explanations in Deep Learning;2024 10th International Conference on Communication and Signal Processing (ICCSP);2024-04-12
2. Lightweight Spectral–Spatial Feature Extraction Network Based on Domain Generalization for Cross-Scene Hyperspectral Image Classification;IEEE Transactions on Geoscience and Remote Sensing;2024
3. Unsupervised Hybrid Network of Transformer and CNN for Blind Hyperspectral and Multispectral Image Fusion;IEEE Transactions on Geoscience and Remote Sensing;2024
4. Spectral–Spatial Features Exploitation Using Lightweight HResNeXt Model for Hyperspectral Image Classification;Canadian Journal of Remote Sensing;2023-07-12
5. Classification With Unbalanced Samples by Self-Sampling and Semicorrelated Co-Training— An Application to Algal Bloom Detection;IEEE Transactions on Geoscience and Remote Sensing;2023
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3