Analyzing and Addressing Data-driven Fairness Issues in Machine Learning Models used for Societal Problems
Author:
Affiliation:
1. San Jose State University,Department of Applied Data Science,San Jose,United States
2. San Jose State University,Department of Computer Science,San Jose,United States
Publisher
IEEE
Link
http://xplorestaging.ieee.org/ielx7/10084914/10084930/10085470.pdf?arnumber=10085470
Reference26 articles.
1. Leveraging Class Balancing Techniques to Alleviate Algorithmic Bias for Predictive Tasks in Education
2. Two simple ways to learn individual fairness metrics from data;mukherjee;International Conference on Machine Learning,2020
3. Fairness without demographics through adversarially reweighted learning;lahoti;Advances in neural information processing systems,2020
4. Fair Class Balancing: Enhancing Model Fairness without Observing Sensitive Attributes
5. Can i trust my fairness metric? assessing fairness with unlabeled data and bayesian inference;ji;Advances in neural information processing systems,2020
Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Assessing the Reliability of Machine Learning Models Applied to the Mental Health Domain Using Explainable AI;Electronics;2024-03-08
2. Analysis of Multilanguage Regional Music Tracks Using Representation Learning Techniques in Lower Dimensions;Lecture Notes in Networks and Systems;2024
3. Spectral analysis perspective of why misinformation containment is still an unsolved problem;2023 IEEE Conference on Artificial Intelligence (CAI);2023-06
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3