A Graph Neural Network Learning Approach to Optimize RIS-Assisted Federated Learning
Author:
Affiliation:
1. School of Information Science and Technology, ShanghaiTech University, Shanghai, China
2. Centre for Wireless Communication, University of Oulu, Oulu, Finland
Funder
National Natural Science Foundation of China
Natural Science Foundation of Shanghai
Shanghai Rising-Star Program
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Subject
Applied Mathematics,Electrical and Electronic Engineering,Computer Science Applications
Link
http://xplorestaging.ieee.org/ielx7/7693/10247109/10032291.pdf?arnumber=10032291
Reference47 articles.
1. A GNN-Based Supervised Learning Framework for Resource Allocation in Wireless IoT Networks
2. Transmission Power Control for Over-the-Air Federated Averaging at Network Edge
3. Graph Neural Networks for Scalable Radio Resource Management: Architecture Design and Theoretical Analysis
4. Joint Client Scheduling and Resource Allocation Under Channel Uncertainty in Federated Learning
5. Over-the-Air Computing for Wireless Data Aggregation in Massive IoT
Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Bayesian Game-Driven Incentive Mechanism for Blockchain-Enabled Secure Federated Learning in 6G Wireless Networks;IEEE Transactions on Network Science and Engineering;2024-09
2. Joint Spectrum, Precoding, and Phase Shifts Design for RIS-Aided Multiuser MIMO THz Systems;IEEE Transactions on Communications;2024-08
3. Over-the-Air Computation Assisted Federated Learning with Progressive Training;ICC 2024 - IEEE International Conference on Communications;2024-06-09
4. Decentralized Satellite Federated Learning via Intra- and Inter-Orbit Communications;2024 IEEE International Conference on Communications Workshops (ICC Workshops);2024-06-09
5. SpreadFGL: Edge-Client Collaborative Federated Graph Learning with Adaptive Neighbor Generation;IEEE INFOCOM 2024 - IEEE Conference on Computer Communications;2024-05-20
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3