Hierarchical Personalized Federated Learning Over Massive Mobile Edge Computing Networks

Author:

You Chaoqun1ORCID,Guo Kun2ORCID,Yang Howard H.3ORCID,Quek Tony Q. S.1ORCID

Affiliation:

1. Wireless Networks and Design Systems Group, Singapore University of Technology and Design, Tampines, Singapore

2. Chongqing Key Laboratory of Precision Optics, Chongqing Institute, East China Normal University, Chongqing, China

3. Zhejiang University/University of Illinois at UrbanaChampaign Institute, Zhejiang University, Haining, China

Funder

National Research Foundation, Singapore, and Infocomm Media Development Authority under its Future Communications Research and Development Programme

Shanghai Pujiang Program

Natural Science Foundation of Chongqing, China

National Natural Science Foundation of China

Zhejiang Provincial Natural Science Foundation of China

Zhejiang–Singapore Innovation and Artificial Intelligence (AI) Joint Research Laboratory

Publisher

Institute of Electrical and Electronics Engineers (IEEE)

Subject

Applied Mathematics,Electrical and Electronic Engineering,Computer Science Applications

Reference34 articles.

1. Robust federated learning in a heterogeneous environment;ghosh;arXiv 1906 06629,2019

2. Enabling large-scale federated learning over wireless edge networks;quang dinh;arXiv 2109 10489,2021

3. PyTorch: An imperative style, high-performance deep learning library;paszke;Proc Adv Neural Inf Process Syst (NeurIPS),2019

4. HeteroFL: Computation and communication efficient federated learning for heterogeneous clients;diao;arXiv 2010 01264,2020

5. Federated learning with non-IID data;zhao;arXiv 1806 00582,2018

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Efficient federated learning with cross-resource client collaboration;International Journal of Machine Learning and Cybernetics;2024-08-20

2. Hierarchical Federated Learning in MEC Networks with Knowledge Distillation;2024 International Joint Conference on Neural Networks (IJCNN);2024-06-30

3. D2D-Assisted Adaptive Federated Learning in Energy-Constrained Edge Computing;Applied Sciences;2024-06-07

4. Joint Client and Resource Optimization for Federated Learning in Wireless IoT Networks;Applied Sciences;2024-01-08

5. AutoSF: Adaptive Distributed Model Training in Dynamic Edge Computing;IEEE Transactions on Mobile Computing;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3