Attacking Deep Reinforcement Learning With Decoupled Adversarial Policy

Author:

Mo Kanghua1ORCID,Tang Weixuan1ORCID,Li Jin1ORCID,Yuan Xu2ORCID

Affiliation:

1. Institute of Artificial Intelligence and Blockchain, Guangzhou University, Guangzhou, Guangdong, China

2. School of Computing and Informatics, University of Louisiana at Lafayette, Lafayette, LA, USA

Funder

National Natural Science Foundation of China

Innovation Research for the Postgraduates of Guangzhou University

Publisher

Institute of Electrical and Electronics Engineers (IEEE)

Subject

Electrical and Electronic Engineering

Reference55 articles.

1. An efficient adversarial example generation algorithm based on an accelerated gradient iterative fast gradient;liu;Comput Standards Interfaces,2021

2. Taking Care of The Discretization Problem: A Comprehensive Study of the Discretization Problem and A Black-Box Adversarial Attack in Discrete Integer Domain

3. Transferability in machine learning: from phenomena to black-box attacks using adversarial samples;papernot,2016

4. The Limitations of Deep Learning in Adversarial Settings

5. Towards Evaluating the Robustness of Neural Networks

Cited by 53 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Using Reinforcement Learning to Escape Automatic Filter-based Adversarial Example Defense;ACM Transactions on Sensor Networks;2024-08-15

2. SnapshotPrune: A Novel Bitcoin-Based Protocol Toward Efficient Pruning and Fast Node Bootstrapping;Tsinghua Science and Technology;2024-08

3. An Evolutionary Algorithm with Variable-Length Chromosome for Multi-objective Minimalistic Attack;2024 IEEE Conference on Artificial Intelligence (CAI);2024-06-25

4. Toward Evaluating Robustness of Reinforcement Learning with Adversarial Policy;2024 54th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN);2024-06-24

5. Cost effective transfer of reinforcement learning policies;Expert Systems with Applications;2024-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3