Deep Reinforcement Learning for Secrecy Energy Efficiency Maximization in RIS-Assisted Networks

Author:

Zhang Yichi1,Lu Yang1ORCID,Zhang Ruichen1ORCID,Ai Bo2ORCID,Niyato Dusit3ORCID

Affiliation:

1. School of Computer and Information Technology, Collaborative Innovation Center of Railway Traffic Safety, Beijing Jiaotong University, Beijing, China

2. State Key Laboratory of Rail Traffic Control and Safety, School of Electronics and Information Engineering, Beijing Jiaotong University, Beijing, China

3. School of Computer Science and Engineering, Nanyang Technological University, Singapore

Funder

Fundamental Research Funds for the Central Universities

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Beijing Nova Program

National Research Foundation, Singapore and Infocomm Media Development Authority

Future Communications Research Development Programme

DSO National Laboratories through AI Singapore Programme

Energy Research Test-Bed and Industry Partnership Funding Initiative

DesCartes and the Campus for Research Excellence and Technological Enterprise (CREATE) programme

Publisher

Institute of Electrical and Electronics Engineers (IEEE)

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Aerospace Engineering,Automotive Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Hybrid MRT and ZF Learning for Energy-Efficient Transmission in Multi-RIS-Assisted Networks;IEEE Transactions on Vehicular Technology;2024-08

2. Secrecy Energy Efficiency Maximization in RIS-Aided Wireless Networks;ICC 2024 - IEEE International Conference on Communications;2024-06-09

3. A PPO-Based Dynamic Asynchronous Semi-Decentralized Federated Edge Learning;2023 IEEE 29th International Conference on Parallel and Distributed Systems (ICPADS);2023-12-17

4. Power Efficiency Physical Layer Security for Multiple Users in IRS-Assisted Uplink Channels: Learning to Phase Shift;GLOBECOM 2023 - 2023 IEEE Global Communications Conference;2023-12-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3