Using Occupant's Data for Electricity Load Prediction based on Machine Learning
Author:
Affiliation:
1. DEWA R&D Center, Dubai Electricity and Water Authority,Dubai,UAE
Publisher
IEEE
Link
http://xplorestaging.ieee.org/ielx7/9741750/9741857/09742156.pdf?arnumber=9742156
Reference15 articles.
1. A review on the prediction of building energy consumption
2. Forecasting short-term electricity consumption using the adaptive grey-based approach—An Asian case
3. A Review of Deep Learning Methods Applied on Load Forecasting
4. Forecasting the annual electricity consumption of Turkey using an optimized grey model
5. Forecasting the annual electricity consumption of Turkey using a hybrid model
Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Short-term Electricity Load Prediction Based on Machine Learning and Improved LSTM Model;2023 IEEE 6th International Conference on Electronic Information and Communication Technology (ICEICT);2023-07-21
2. Analysis of residential electricity consumption patterns utilizing smart-meter data: Dubai as a case study;Energy and Buildings;2023-07
3. Understanding Energy Behavioral Changes Due to COVID-19 in the Residents of Dubai Using Electricity Consumption Data and Their Impacts;Energies;2022-12-27
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3