Experimental Evaluation of Ensemble Learning-Based Models for Twitter Spam Classification

Author:

Jimoh R. G.1,Oyelakin A. M.2,Olatinwo I. S.3,Obiwusi K. Y.4,Muhammad-Thani S.5,Ogundele T. S.6,Giwa-Raheem A.7,Ayepeku O. F.8

Affiliation:

1. University of Ilorin,Department of Computer Science,Ilorin,Nigeria

2. Al-Hikmah Unirsity,Department of Computer Science,Ilorin,Nigeria

3. Federal Polytechnic,Department of Computer Science,Offa,Nigeria

4. Summit University,Department of Mathematics and Computer Science,Offa,Nigeria

5. Kwara State College of Education,Department of Computer Science,Ilorin,Nigeria

6. Al-Hikmah University,Department of Computer Science,Ilorin,Nigeria

7. Centre for Part Time and Professional Studies, Al-Hikmah University,Ilorin,Nigeria

8. Thomas Adewunmi University,Department of Computer Science,Oko,Nigeria

Publisher

IEEE

Reference14 articles.

1. Ensemble Learning;brown;Encyclopedia of Machine Learning,2010

2. Random Forests;breiman;Machine Learning,2001

3. Mastering Machine Learning with Python in Six Steps

4. Bagging predictors

5. Social spam detection

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. COMPARATIVE ANALYSIS OF RANDOM FOREST AND ADABOOST LEARNING MODELS FOR THE CLASSIFICATION OF ATTACKS IN INTERNET OF THINGS;FUDMA JOURNAL OF SCIENCES;2024-06-30

2. Extreme Learning Machine for Spammer Detection and Fake User Identification from Twitter;2024 IEEE 13th International Conference on Communication Systems and Network Technologies (CSNT);2024-04-06

3. Efficient Ensemble-based Phishing Website Classification Models using Feature Importance Attribute Selection and Hyper parameter Tuning Approaches;Journal of Information Technology and Computing;2023-12-30

4. A SURVEY ON PROMISING DATASETS AND RECENT MACHINE LEARNING APPROACHES FOR THE CLASSIFICATION OF ATTACKS IN INTERNET OF THINGS;Journal of Information Technology and Computing;2023-12-30

5. Twitter Spam Detection Using Word Vector and Binary Classifier;2023 International Conference on Self Sustainable Artificial Intelligence Systems (ICSSAS);2023-10-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3