Energy-Efficiency Maximization of Multiple RISs-Enabled Communication Networks by Deep Reinforcement Learning
Author:
Affiliation:
1. Kyung Hee University,Department of Computer Science and Engineering,Yongin-si,Republic of Korea
2. University of Houston,Department of Electrical and Computer Engineering,Houston,TX,USA
Publisher
IEEE
Link
http://xplorestaging.ieee.org/ielx7/9837954/9838246/09838468.pdf?arnumber=9838468
Reference22 articles.
1. Robust Secure UAV Communications With the Aid of Reconfigurable Intelligent Surfaces
2. Energy-efficient wireless communications with distributed reconfigurable intelligent surfaces;yang;IEEE Trans on Wireless Communications (early access),2021
3. Deep Reinforcement Learning for Energy-Efficient Networking with Reconfigurable Intelligent Surfaces
4. Reconfigurable Intelligent Surface Assisted Multiuser MISO Systems Exploiting Deep Reinforcement Learning
5. Reconfigurable Intelligent Surface-Assisted Aerial-Terrestrial Communications via Multi-Task Learning
Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Proximal Policy Optimization for Energy-Efficient MEC Systems with STAR-RIS Assistance;2024 International Conference on Information Networking (ICOIN);2024-01-17
2. Resource Allocation for Multi-Active-RIS assisted MISO Communications via Deep Reinforcement Learning;2023 International Conference on Future Communications and Networks (FCN);2023-12-17
3. DRL-Based Transmission Design for Distributed STAR-RIS-aided Communications;2023 IEEE International Conference on Advanced Networks and Telecommunications Systems (ANTS);2023-12-17
4. Double reconfigurable intelligent surface-assisted wireless communication system for energy efficiency improvement over weibull fading channels;Telecommunication Systems;2023-06-07
5. Deep Reinforcement Learning based Spectral Efficiency Maximization in STAR-RIS-Assisted Indoor Outdoor Communication;NOMS 2023-2023 IEEE/IFIP Network Operations and Management Symposium;2023-05-08
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3