Low-Complexity Implicit Detection for Massive MIMO Using Neumann Series
Author:
Affiliation:
1. School of Information Engineering, Henan University of Science and Technology, Luoyang, Henan, China
2. Department of Computer Science and Engineering, Michigan State University, East Lansing, MI, USA
Funder
Key Scientific Research Project in Colleges and Universities of Henan Province of China
Key Technologies R & D Program of Henan Province
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Aerospace Engineering,Automotive Engineering
Link
http://xplorestaging.ieee.org/ielx7/25/9857756/09770405.pdf?arnumber=9770405
Reference16 articles.
1. High Precision Low Complexity Matrix Inversion Based on Newton Iteration for Data Detection in the Massive MIMO
2. On the matrix inversion approximation based on neumann series in massive MIMO systems
3. An Eigen-Based Approach for Enhancing Matrix Inversion Approximation in Massive MIMO Systems
4. Approximate Expectation Propagation Massive MIMO Detector With Weighted Neumann-Series
5. Low Complexity Iterative MMSE-PIC Detection for Medium-Size Massive MIMO
Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Index Modulation for Fluid Antenna-Assisted MIMO Communications: System Design and Performance Analysis;IEEE Transactions on Wireless Communications;2024-08
2. Low Complexity Interference Rejection Combining Equalizer for Extreme Massive MIMO;2024 IEEE Wireless Communications and Networking Conference (WCNC);2024-04-21
3. Low-Complexity BFGS-Based Soft-Output MMSE Detector for Massive MIMO Uplink;IET Signal Processing;2023-11-14
4. Restricted Search Space Exploration With Refinement for Symbol Detection in Uplink Massive MIMO;IEEE Transactions on Vehicular Technology;2023-10
5. Efficient Precoding and Power Allocation Techniques for Maximizing Spectral Efficiency in Beamspace MIMO-NOMA Systems;Sensors;2023-09-20
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3