Synthetic-to-Real Domain Adaptation for Action Recognition: A Dataset and Baseline Performances

Author:

Reddy Arun V.1,Shah Ketul1,Paul William2,Mocharla Rohita2,Hoffman Judy3,Katyal Kapil D.2,Manocha Dinesh4,de Melo Celso M.5,Chellappa Rama1

Affiliation:

1. Johns Hopkins University,Dept. of Electrical & Computer Engineering,Baltimore,MD,USA

2. Johns Hopkins University Applied Physics Lab,Laurel,MD,USA

3. Georgia Institute of Technology,Atlanta,GA,USA

4. University of Maryland,College Park,MD,USA

5. Army Research Lab,Adelphi,MD,USA

Funder

Army Research Laboratory (ARL)

Publisher

IEEE

Reference59 articles.

1. Moment Matching for Multi-Source Domain Adaptation

2. Procedural Generation of Videos to Train Deep Action Recognition Networks

3. Adapting visual category models to new domains;saenko;European Conference on Computer Vision,0

4. Randaugment: Practical automated data augmentation with a reduced search space

5. Cycada: Cycle-consistent adversarial domain adaptation;hoffman;Int Conference on Machine Learning,0

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Enhancing human action recognition with GAN-based data augmentation;Synthetic Data for Artificial Intelligence and Machine Learning: Tools, Techniques, and Applications II;2024-06-07

2. Real-time human action recognition from aerial videos using autozoom and synthetic data;Synthetic Data for Artificial Intelligence and Machine Learning: Tools, Techniques, and Applications II;2024-06-07

3. An evaluation of large pre-trained models for gesture recognition using synthetic videos;Synthetic Data for Artificial Intelligence and Machine Learning: Tools, Techniques, and Applications II;2024-06-07

4. Exploring the Impact of Rendering Method and Motion Quality on Model Performance when Using Multi-view Synthetic Data for Action Recognition;2024 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV);2024-01-03

5. An In-Depth Analysis of Domain Adaptation in Computer and Robotic Vision;Applied Sciences;2023-11-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3