Automatic Classification Method of Fault Data in Low Voltage Distribution Network Based on SVM
Author:
Affiliation:
1. State Grid Zhejiang Electric Power Research Institute,Hangzhou,China,310014
2. State Grid Zhejiang Electric Power Co., Ltd.,Hangzhou,China,310007
3. Shanghai SHR Automation Co., Ltd.,Shanghai,China,201108
Publisher
IEEE
Link
http://xplorestaging.ieee.org/ielx7/9723821/9723822/09723900.pdf?arnumber=9723900
Reference11 articles.
1. Incipient Fault Diagnosis in the Distribution Network Based on S-Transform and Polarity of Magnitude Difference
2. Fault identification based on LOF and SVM for smart distribution network;wei;Electric Power Automation Equipment,2016
3. SVM‐based method for high‐impedance faults detection in distribution networks
4. Fault identification of rotor-bearing system based on ensemble empirical mode decomposition and self-zero space projection analysis
5. Fault Section Identification in Smart Distribution Systems Using Multi-Source Data Based on Fuzzy Petri Nets
Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Low-Voltage Distribution Network Topology Identification Method Based on Segmented Current Features and CNN-LSTM Deep Learning;2023 6th International Conference on Energy, Electrical and Power Engineering (CEEPE);2023-05-12
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3