Two Recurrent Neural Networks With Reduced Model Complexity for Constrained l₁-Norm Optimization

Author:

Xia Youshen1ORCID,Wang Jun2ORCID,Lu Zhenyu3ORCID,Huang Liqing4ORCID

Affiliation:

1. College of Artificial Intelligence, Nanjing University of Information Science and Technology, Nanjing 211544, China (e-mail: ysxia2001@163.com)

2. Department of Computer Science, City University of Hong Kong, Kowloon, Hong Kong.

3. Jiangsu Key Laboratory of Meteorological Observation and Information Processing, Nanjing University of Information Science and Technology, Nanjing 210044, China.

4. College of Mathematics and Information, Fujian Normal University, Fuzhou 350117, China.

Funder

Startup Foundation for Introducing Talent of Nanjing University of Information Science and Technology NUIST

Research Grants Council of the Hong Kong Special Administrative Region of China under General Research Fund

Key Program of National Natural Science Foundation of China

Natural Science Foundation of Fujian Province in China

Publisher

Institute of Electrical and Electronics Engineers (IEEE)

Subject

Artificial Intelligence,Computer Networks and Communications,Computer Science Applications,Software

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Survey of Neurodynamic Optimization;IEEE Transactions on Emerging Topics in Computational Intelligence;2024-08

2. Safety-Certified Self-Triggered Cooperative Path Following Control via Data-Driven Learning and Neurodynamic Optimization;IEEE Transactions on Automation Science and Engineering;2024

3. Logistic Adaptive Controller with Overhead Reduction for Multirobot Systems;IEEE Transactions on Industrial Electronics;2024

4. Use Coupled LSTM Networks to Solve Constrained Optimization Problems;IEEE Transactions on Cognitive Communications and Networking;2023-04

5. GNN Model for Time-Varying Matrix Inversion With Robust Finite-Time Convergence;IEEE Transactions on Neural Networks and Learning Systems;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3