Attention Based Neural Networks for Wireless Channel Estimation

Author:

Luan Dianxin1,Thompson John1

Affiliation:

1. Institute for Digital Communications, School of Engineering, University of Edinburgh,Edinburgh,UK,EH9 3JL

Publisher

IEEE

Reference20 articles.

1. Deep Learning Based OFDM Channel Estimation Using Frequency-Time Division and Attention Mechanism

2. An attention-aided deep learning framework for massive MIMO channel estimation;gao;IEEE Transactions on Wireless Communications,2021

3. Attention is all you need;vaswani;Advances in neural information processing systems,2017

4. Two new sum-of-sinusoids-based methods for the efficient generation of multiple uncorrelated rayleigh fading waveforms

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. MIMO-NOMA-DAE: A Deep Learning based Downlink MIMO-NOMA Scheme for Low-Power Applications with Imperfect CSI;2024 6th Global Power, Energy and Communication Conference (GPECOM);2024-06-04

2. Low Complexity Deep Learning Augmented Wireless Channel Estimation for Pilot-Based OFDM on Zynq System on Chip;IEEE Transactions on Circuits and Systems I: Regular Papers;2024-05

3. Low Complexity High Speed Deep Neural Network Augmented Wireless Channel Estimation;2024 37th International Conference on VLSI Design and 2024 23rd International Conference on Embedded Systems (VLSID);2024-01-06

4. CE-ViT: A Robust Channel Estimator Based on Vision Transformer for OFDM Systems;GLOBECOM 2023 - 2023 IEEE Global Communications Conference;2023-12-04

5. Channel Estimation for IRS Aided MIMO System with Neural Network Solution;2023 IEEE 98th Vehicular Technology Conference (VTC2023-Fall);2023-10-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3