Optimizing Training Efficiency and Cost of Hierarchical Federated Learning in Heterogeneous Mobile-Edge Cloud Computing

Author:

Cui Yangguang1ORCID,Cao Kun2ORCID,Zhou Junlong3ORCID,Wei Tongquan1ORCID

Affiliation:

1. School of Computer Science and Technology, Shanghai Key Laboratory of Trustworthy Computing and the Shanghai Trusted Industry Internet Software Collaborative Innovation Center, East China Normal University, Shanghai, China

2. College of Information Science and Technology, Jinan University, Guangzhou, China

3. School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing, China

Funder

NSFC

Open Project Program of the State Key Laboratory of Mathematical Engineering and Advanced Computing

China Postdoctoral Science Foundation

Science and Technology Project of Guangzhou

Fundamental Research Funds for the Central Universities

NSF of Jiangsu Province

Open Research Fund of the State Key Laboratory of Computer Architecture, Institute of Computing Technology, Chinese Academy of Sciences

Publisher

Institute of Electrical and Electronics Engineers (IEEE)

Subject

Electrical and Electronic Engineering,Computer Graphics and Computer-Aided Design,Software

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Device Selection Methods in Federated Learning: A Survey;SN Computer Science;2024-08-02

2. Tomtit: Hierarchical Federated Fine-Tuning of Giant Models based on Autonomous Synchronization;IEEE INFOCOM 2024 - IEEE Conference on Computer Communications;2024-05-20

3. Optimising the computational and cost efficiency of hierarchical federated edge learning;Fourth International Conference on Telecommunications, Optics, and Computer Science (TOCS 2023);2024-05-07

4. Emerging trends in federated learning: from model fusion to federated X learning;International Journal of Machine Learning and Cybernetics;2024-04-02

5. Network Sliced Distributed Learning-as-a-Service for Internet of Vehicles Applications in 6G Non-Terrestrial Network Scenarios;Journal of Sensor and Actuator Networks;2024-02-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3