Few-Shot Class-Incremental Learning via Compact and Separable Features for Fine-Grained Vehicle Recognition
Author:
Affiliation:
1. School of Computer Science and Technology, Beijing Institute of Technology, Beijing, China
2. School of Artificial Intelligence, Beijing Normal University, Beijing, China
Funder
National Natural Science Foundation of China
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Subject
Computer Science Applications,Mechanical Engineering,Automotive Engineering
Link
http://xplorestaging.ieee.org/ielx7/6979/9942712/09780261.pdf?arnumber=9780261
Reference70 articles.
1. Visualizing data using t-SNE;van der maaten;J Mach Learn Res,2008
2. A Deep Learning-Based Approach to Progressive Vehicle Re-identification for Urban Surveillance
3. Vision-based Autonomous Vehicle Recognition
4. Multi-Attention Multi-Class Constraint for Fine-grained Image Recognition
5. Bilinear CNN Models for Fine-Grained Visual Recognition
Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Few-shot incremental radar target recognition framework based on scattering-topology properties;Chinese Journal of Aeronautics;2024-08
2. Few-Shot Class-Incremental Learning with Class Centers and Contrastive Learning for Incremental Vehicle Recognition;2024 International Joint Conference on Neural Networks (IJCNN);2024-06-30
3. Distribution Character-Guided Projection Replay Network for Class-Incremental Fault Diagnosis of Rotating Machinery;IEEE Sensors Journal;2024-04-15
4. Real-Time Classification of Vehicles Using Machine Learning Algorithm on the Extensive Dataset;IEEE Access;2024
5. A survey on few-shot class-incremental learning;Neural Networks;2024-01
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3