Constructing Cooperative Intelligent Transport Systems for Travel Time Prediction With Deep Learning Approaches
Author:
Affiliation:
1. Department of Engineering Science, National Cheng Kung University, Tainan, Taiwan
2. Department of Information Management, National Taichung University of Science and Technology, Taichung, Taiwan
Funder
Directorate General of Highways, Ministry of Transportation and Communications and the Ministry of Science and Technology, Taiwan
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Subject
Computer Science Applications,Mechanical Engineering,Automotive Engineering
Link
http://xplorestaging.ieee.org/ielx7/6979/9893028/09768125.pdf?arnumber=9768125
Reference33 articles.
1. A new Budyko framework extension using time series SARIMAX model
2. An integrated framework of Bi-directional long-short term memory (BiLSTM) based on sine cosine algorithm for hourly solar radiation forecasting
3. Support vector method for function approximation, regression estimation, and signal processing;vapnik;Proc Adv Neural Inf Process Syst,1997
4. Utilizing data mining techniques to predict expected freeway travel time from experienced travel time
5. LSTM-based traffic flow prediction with missing data
Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Chaos theory meets deep learning: A new approach to time series forecasting;Expert Systems with Applications;2024-12
2. Supporting Differentiated Streaming Services in Heterogeneous Vehicle-to-Everything Networks;Sensors;2024-08-02
3. A High-Dimensional Temporal Data Publishing Method Based on Dynamic Bayesian Networks and Differential Privacy;2024 International Joint Conference on Neural Networks (IJCNN);2024-06-30
4. Expressway Vehicle Arrival Time Estimation Algorithm Based on Electronic Toll Collection Data;Sustainability;2024-06-29
5. Leaky Cable Perimeter Intrusion Detection Based on Deep Reinforcement Learning;IEEE Internet of Things Journal;2024-06-15
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3