Safe-State Enhancement Method for Autonomous Driving via Direct Hierarchical Reinforcement Learning
Author:
Affiliation:
1. State Key Laboratory of Automotive Safety and Energy, School of Vehicle and Mobility, Tsinghua University, Beijing, China
2. Alibaba Group, Hangzhou, China
3. Harvard John A. Paulson School of Engineering and Applied Sciences, Cambridge, MA, USA
Funder
National Natural Science Foundation of China
National Key Research and Development Program of China
Alibaba Group through Alibaba Innovative Research Program
Alibaba Research Intern Program and Tsinghua–Toyota Joint Research Fund
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Subject
Computer Science Applications,Mechanical Engineering,Automotive Engineering
Link
http://xplorestaging.ieee.org/ielx7/6979/10235283/10120651.pdf?arnumber=10120651
Reference52 articles.
1. Verifiably Safe Off-Model Reinforcement Learning
2. Verification and repair of control policies for safe reinforcement learning
3. Model-free safe control for zero-violation reinforcement learning;zhao;Proc Conf Robot Learn,2021
4. Control Barrier Function Based Quadratic Programs for Safety Critical Systems
5. LTP: Lane-based Trajectory Prediction for Autonomous Driving
Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A novel deep ensemble reinforcement learning based control method for strip flatness in cold rolling steel industry;Engineering Applications of Artificial Intelligence;2024-08
2. Recent advances in reinforcement learning-based autonomous driving behavior planning: A survey;Transportation Research Part C: Emerging Technologies;2024-07
3. Optimization-Based Trajectory Planning for Multiple Robots in Unstructured Environments;2024 8th International Conference on Robotics and Automation Sciences (ICRAS);2024-06-21
4. A Reinforcement Learning-Boosted Motion Planning Framework: Comprehensive Generalization Performance in Autonomous Driving;2024 IEEE Intelligent Vehicles Symposium (IV);2024-06-02
5. A methodology of cooperative driving based on microscopic traffic prediction;Physica A: Statistical Mechanics and its Applications;2024-06
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3