A Weakly Supervised-Guided Soft Attention Network for Classification of Intracranial Hemorrhage

Author:

Zhang Long1ORCID,Miao Wenlong1,Zhu Chuang2ORCID,Wang Yuanyuan3ORCID,Luo Yihao1,Song Ruoning1ORCID,Liu Lian4,Yang Jie2ORCID

Affiliation:

1. Beijing Key Laboratory of Network System Architecture and Convergence, School of Artificial Intelligence, Beijing University of Posts and Telecommunications, Beijing, China

2. School of Artificial Intelligence, Beijing University of Posts and Telecommunications, Beijing, China

3. Image Processing Center, Beijing University of Aeronautics and Astronautics, Beijing, China

4. Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China

Funder

National Natural Science Foundation of China

Beijing Municipal Natural Science Foundation

Beijing Natural Science Foundation

Beijing Laboratory of Advanced Information Networks of Beijing University of Posts and Telecommunications

Beijing Key Laboratory of Network System Architecture and Convergence of BUPT

National Key Research and Development Program of China

Publisher

Institute of Electrical and Electronics Engineers (IEEE)

Subject

Artificial Intelligence,Software

Reference39 articles.

1. EfficientNet: Rethinking model scaling for convolutional neural networks;tan;Proc Int Conf Mach Learn,2019

2. A Weakly-Supervised Framework for COVID-19 Classification and Lesion Localization From Chest CT

3. Very deep convolutional networks for large-scale image recognition;simonyan;arXiv 1409 1556,2014

4. A Novel Method for Segmentation of CT Head Images

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3