Generative Domain Generalization Network based on Local Maximum Mean Discrepancy for Bearing Fault Diagnosis of Wind Turbine
Author:
Affiliation:
1. Shenyang University of Technology,College of Electrical Engineering,Shenyang,110870
Funder
National Natural Science Foundation of China
Publisher
IEEE
Link
http://xplorestaging.ieee.org/ielx8/10587298/10587321/10587439.pdf?arnumber=10587439
Reference14 articles.
1. Fault Diagnosis for Wind Turbine Generators Using Normal Behavior Model Based on Multi-Task Learning
2. Fault detection in wind turbine generators using a meta-learning-based convolutional neural network
3. Unsupervised domain adaptation of bearing fault diagnosis based on Join Sliced Wasserstein Distance
4. A review of failure modes, condition monitoring and fault diagnosis methods for large-scale wind turbine bearings
5. New domain adaptation method in shallow and deep layers of the CNN for bearing fault diagnosis under different working conditions
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3