A Gaussian Mixture Model and Conditional Generative Adversarial Network based Hybrid Method for Short-Term Wind Power Forecasting of Offshore Wind Farms
Author:
Affiliation:
1. Hohai University,College of Energy and Electrical Engineering,Nanjing,China
2. State Grid Jiangsu Electric Power Co., Ltd.,Electric Power Research Institute,Nanjing,China
Publisher
IEEE
Link
http://xplorestaging.ieee.org/ielx7/10406302/10407105/10407321.pdf?arnumber=10407321
Reference20 articles.
1. Ultra-short Term Wind Power Forecast for Offshore Energy System Based on EEMD-TCN
2. Transcript of the National Energy Administrations 2023 Second Quarter Press Conference
3. Optimal sizing of energy storage system and its cost-benefit analysis for power grid planning with intermittent wind generation
4. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model
5. Numerical weather prediction enhanced wind power forecasting: Rank ensemble and probabilistic fluctuation awareness
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3