Proposed CNN Model for Classification of Brain Tumor Disease
Author:
Affiliation:
1. Chitkara University,Chitkara University Institute of Engineering and Technology,Punjab,India
Publisher
IEEE
Link
http://xplorestaging.ieee.org/ielx7/10150430/10150434/10151070.pdf?arnumber=10151070
Reference17 articles.
1. Siamese Convolutional Neural Network-Based Twin Structure Model for Independent Offline Signature Verification
2. Automatic Detection of Cassava Leaf Disease using Transfer Learning Model;singh;2022 6th International Conference on Electronics Communication and Aerospace Technology,2022
3. Modified U-NET Architecture for Segmentation of Skin Lesion
4. Fusion of U-Net and CNN model for segmentation and classification of skin lesion from dermoscopy images
5. CNN-based brain tumor detection model using local binary pattern and multi-layered SVM classifier;kolla;Computational Intelligence and Neuroscience,2022
Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A Deep Learning Approach for Knee Osteoarthritis Classification Using Convolutional Neural Networks;2024 IEEE International Conference on Information Technology, Electronics and Intelligent Communication Systems (ICITEICS);2024-06-28
2. Deep Learning Architectures for Alzheimer's Disease Classification Using Convolutional Neural Networks;2024 International Conference on E-mobility, Power Control and Smart Systems (ICEMPS);2024-04-18
3. Exploring the Efficacy of Machine Learning Models for Brain Tumor Detection with Binary Classification;2024 3rd International Conference for Innovation in Technology (INOCON);2024-03-01
4. Smart Contract Security: A Review with a Focus on Decentralized Finance;2024 3rd International Conference for Innovation in Technology (INOCON);2024-03-01
5. Utilizing Visual Geometry Group (VGG16) and InceptionV3 convolutional Neural Network (CNN) models for accurate diagnosis of lung cancer: an Artificial Intelligence (AI)-based approach;Multimedia Tools and Applications;2023-12-14
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3