Development of Short-Term Wind Power Forecasting Methods
Author:
Affiliation:
1. University of New Brunswick,Dept. of Elec. & Comp. Eng.,Fredericton,Canada
Publisher
IEEE
Link
http://xplorestaging.ieee.org/ielx7/10058186/10058061/10058414.pdf?arnumber=10058414
Reference21 articles.
1. Rough Deep Neural Architecture for Short-Term Wind Speed Forecasting
2. A novel hybrid model for short-term wind power forecasting
3. Short-Term Load Forecasting With Deep Residual Networks
4. Short-term forecasting using advanced physical modelling: the results of the anemos project;giebel;Proceedings of the European Wind Energy Conference,2006
5. Wind speed prediction using a hybrid model of the multi-layer perceptron and whale optimization algorithm
Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Two-stage short-term wind power probabilistic prediction using natural gradient boosting combined with neural network;Applied Soft Computing;2024-07
2. An adaptive distribution-matched recurrent network for wind power prediction using time-series distribution period division;Energy;2024-07
3. Day-ahead wind power prediction using an ensemble model considering multiple indicators combined with error correction;Applied Soft Computing;2023-11
4. Enhanced GJO-BiLSTM Wind Power Prediction Model;2023 IEEE PELS Students and Young Professionals Symposium (SYPS);2023-08-27
5. Research on Stepwise Clustering and Fitting Method for Wind Power Based on Discrete Wavelet Transform;2023 3rd Power System and Green Energy Conference (PSGEC);2023-08
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3