Hybrid Deep Convolutional Generative Adversarial Networks (DCGANS) and Style Generative Adversarial Network (STYLEGANS) Algorithms to Improve Image Quality

Author:

Hariharan B.1,S Karthic2,S Indra Priyadharshini3,Nalina E.4,N. R Wilfred Blessing5,Senthil Prakash P. N.6

Affiliation:

1. SRM Institute of Science and Technology,Department of Computational Intelligence,Tamil Nadu,India

2. KPR Institute of Engineering and Technology,Department of Artificial Intelligence and Data Science,Coimbatore,India

3. Vellore Institute of Technology,School of Computer Science and Engineering,Chennai Campus,Tamil Nadu,India

4. R.M.D. Engineering College,Tamil Nadu,India

5. IT University of Technology and Applied Sciences,Ibri,Oman

6. RMK College of Engineering and Technology,Department of Computer Science and Engineering,Tamil Nadu,India

Publisher

IEEE

Reference16 articles.

1. Improving resolution of images using Generative Adversarial Networks

2. DCGAN based Pre-trained model for Image Reconstruction using ImageNet

3. A Deep Convolutional Generative Adversarial Networks (DCGANs)-Based Semi-Supervised Method for Object Recognition in Synthetic Aperture Radar (SAR) Images;wang,2018

4. Real or Not Real, that is the Question;xiangli,2020

5. Deep Convolutional Generative Adversarial Network and Convolutional Neural Network for Smoke Detection

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Systematic Review on Generative Adversarial Network (GAN): Challenges and Future Directions;Archives of Computational Methods in Engineering;2024-05-14

2. An Improved Deep Convolutional Generative Adversarial Network for Anime-Style Character Image Painting;2024 9th International Conference on Computer and Communication Systems (ICCCS);2024-04-19

3. Research on High-Fidelity License Plates Generated Using Generative Adversarial Network (GAN) Technology for Vehicle Recognition Systems;Proceedings of the 2024 13th International Conference on Software and Computer Applications;2024-02

4. Data Augmentation and Few-Shot Change Detection in Forest Remote Sensing;IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3