Collaborative Reinforcement Learning for Multi-Service Internet of Vehicles
Author:
Affiliation:
1. Department of Electrical, Electronic and Information Engineering “Guglielmo Marconi,”, University of Bologna, Bologna, Italy
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Subject
Computer Networks and Communications,Computer Science Applications,Hardware and Architecture,Information Systems,Signal Processing
Link
http://xplorestaging.ieee.org/ielx7/6488907/10024910/09916276.pdf?arnumber=9916276
Reference39 articles.
1. Deep Reinforcement Learning for Intelligent Internet of Vehicles: An Energy-Efficient Computational Offloading Scheme
2. Deep Reinforcement Learning-Based Intelligent Reflecting Surface for Secure Wireless Communications
3. Value-decomposition networks for cooperative multi-agent learning;sunehag;arXiv 1706 05296,2017
4. Energy-Efficient Federated Edge Learning with Joint Communication and Computation Design
5. Deep Reinforcement Learning for Offloading and Resource Allocation in Vehicle Edge Computing and Networks
Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Cloud-Edge-End Collaborative Multi-Service Resource Management for IoT-Based Distribution Grid;IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences;2024-09-01
2. Integrated Aerial-Ground Computation Offloading for Dependency-Aware IoV Multitask Services;2024 IEEE International Mediterranean Conference on Communications and Networking (MeditCom);2024-07-08
3. Cross-domain resources optimization for hybrid edge computing networks: federated DRL approach;Digital Communications and Networks;2024-03
4. Hierarchical Reinforcement Learning for Multi-Layer Multi-Service Non-Terrestrial Vehicular Edge Computing;IEEE Transactions on Machine Learning in Communications and Networking;2024
5. A Game-Based Computing Resource Allocation Scheme of Edge Server in Vehicular Edge Computing Networks Considering Diverse Task Offloading Modes;Sensors;2023-12-22
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3