Unsupervised Feature Representation Based on Deep Boltzmann Machine for Seizure Detection
Author:
Affiliation:
1. Research Center for Augmented Intelligence, Research Institute of Artificial Intelligence, Zhejiang Laboratory, Hangzhou, China
2. School of Electrical and Information Engineering, The University of Sydney, Camperdown, NSW, Australia
Funder
National Natural Science Foundation of China
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Subject
Biomedical Engineering,General Neuroscience,Internal Medicine,Rehabilitation
Link
http://xplorestaging.ieee.org/ielx7/7333/10031624/10064189.pdf?arnumber=10064189
Reference47 articles.
1. Machine Learning for Predicting Epileptic Seizures Using EEG Signals: A Review
2. EEG signal classification using PCA, ICA, LDA and support vector machines
3. Automatic detection of epileptic seizures in EEG using discrete wavelet transform and approximate entropy
4. Analysis of EEG records in an epileptic patient using wavelet transform
5. EEG signal classification using wavelet feature extraction and a mixture of expert model
Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Tri-SeizureDualNet: A novel multimodal brain seizure detection using triple stream skipped feature extraction module entrenched dual parallel attention transformer;Biomedical Signal Processing and Control;2024-02
2. Acoustic-articulatory emotion recognition using multiple features and parameter-optimized cascaded deep learning network;Knowledge-Based Systems;2024-01
3. Robust Epileptic Seizure Detection Using Long Short-Term Memory and Feature Fusion of Compressed Time–Frequency EEG Images;Sensors;2023-12-02
4. Improving Seizure Detection by Integrating Feature Selection and Classification Techniques;2023 7th International Conference on Computer Applications in Electrical Engineering-Recent Advances (CERA);2023-10-27
5. Unsupervised Feature Representation of Sleep EEG Data with Transient Deep Boltzmann Machine *;2023 45th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC);2023-07-24
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3