Exploring the Intrinsic Features of EEG Signals via Empirical Mode Decomposition for Depression Recognition
Author:
Affiliation:
1. Brain Health Engineering Laboratory, School of Medical Technology, Beijing Institute of Technology, Beijing, China
2. School of Information Science and Engineering, Lanzhou University, Lanzhou, China
Funder
National Key Research and Development Program of China
Project through the China Postdoctoral Science Foundation
National Natural Science Foundation of China
Beijing Institute of Technology Research Fund Program for Young Scholars
Fundamental Research Funds for the Central Universities
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Subject
Biomedical Engineering,General Neuroscience,Internal Medicine,Rehabilitation
Link
http://xplorestaging.ieee.org/ielx7/7333/10031624/09950447.pdf?arnumber=9950447
Reference52 articles.
1. Frontal EEG asymmetry as a moderator and mediator of emotion
2. EEG-Based Cognitive Interfaces for Ubiquitous Applications: Developments and Challenges
3. Prenatal Maternal Stress, Child Cortical Thickness, and Adolescent Depressive Symptoms
4. Reduced grey matter volume in frontal and temporal areas in depression: contributions from voxel-based morphometry study
5. Statistical comparisons of classifiers over multiple data sets;demšar;J Mach Learn Res,2006
Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. HEMAsNet: A Hemisphere Asymmetry Network Inspired by the Brain for Depression Recognition From Electroencephalogram Signals;IEEE Journal of Biomedical and Health Informatics;2024-09
2. Insights from EEG analysis of evoked memory recalls using deep learning for emotion charting;Scientific Reports;2024-07-24
3. Attention-Guided Multiscale Convolutional Neural Network for Driving Fatigue Detection;IEEE Sensors Journal;2024-07-15
4. Hierarchical Encoding and Fusion of Brain Functions for Depression Subtype Classification;IEEE Transactions on Affective Computing;2024-07
5. Imbalanced Industrial Load Identification Based on Optimized CatBoost with Entropy Features;Journal of Electrical Engineering & Technology;2024-06-11
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3