Communication-Efficient Privacy-Preserving Federated Learning via Knowledge Distillation for Human Activity Recognition Systems

Author:

Gad Gad1,Fadlullah Zubair Md2,Rabie Khaled3,Fouda Mostafa M.4

Affiliation:

1. Lakehead University,Department of Computer Science,Thunder Bay,Ontario,Canada

2. Western University,Department of Computer Science,London,ON,Canada

3. Manchester Metropolitan University,Department of Engineering,Manchester,UK

4. Idaho State University,Department of Electrical and Computer Engineering,Pocatello,ID,USA

Publisher

IEEE

Reference22 articles.

1. A review of applications in federated learning

2. Robust Enhancement of Intrusion Detection Systems Using Deep Reinforcement Learning and Stochastic Game

3. Sensor-Based Abnormal Human-Activity Detection

4. Communication-efficient learning of deep networks from decentralized data;mcmahan;Proceedings of the International Conference on Artificial Intelligence and Statistics (AISTATS),0

5. FedMD: Heterogenous federated learning via model distillation;li;ArXiv Preprint,2019

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Federated Learning With Selective Knowledge Distillation Over Bandwidth-constrained Wireless Networks;ICC 2024 - IEEE International Conference on Communications;2024-06-09

2. A Robust Federated Learning Approach for Combating Attacks Against IoT Systems Under Non-IID Challenges;2024 International Conference on Smart Applications, Communications and Networking (SmartNets);2024-05-28

3. Combating Malware Traffic in Emerging Networks: A Collaborative Learning Approach;2024 International Conference on Smart Applications, Communications and Networking (SmartNets);2024-05-28

4. Joint Self-Organizing Maps and Knowledge-Distillation-Based Communication-Efficient Federated Learning for Resource-Constrained UAV-IoT Systems;IEEE Internet of Things Journal;2024-05-01

5. Joint Knowledge Distillation and Local Differential Privacy for Communication-Efficient Federated Learning in Heterogeneous Systems;GLOBECOM 2023 - 2023 IEEE Global Communications Conference;2023-12-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3