Decentralized Federated Reinforcement Learning for User-Centric Dynamic TFDD Control

Author:

Yin Ziyan1ORCID,Wang Zhe2ORCID,Li Jun1ORCID,Ding Ming3ORCID,Chen Wen4ORCID,Jin Shi5ORCID

Affiliation:

1. School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing, China

2. School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing, China

3. Data61, CSIRO, Sydney, NSW, Australia

4. Department of Electronic Engineering, Shanghai Jiao Tong University, Shanghai, China

5. National Mobile Communications Research Laboratory, Southeast University, Nanjing, China

Funder

National Key Project

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Future Network Grant of Provincial Education Board in Jiangsu

Natural Science Foundation of Jiangsu Province

Shanghai Kewei

Pudong

Publisher

Institute of Electrical and Electronics Engineers (IEEE)

Subject

Electrical and Electronic Engineering,Signal Processing

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On optimization of resource allocation for LTE aided by WLAN networks with unlicensed frequency bands in internet of vehicles;IET Communications;2024-02-27

2. Deep Reinforcement Learning for UAV-Assisted Spectrum Sharing: A Minority Game Approach;2023 IEEE International Conferences on Internet of Things (iThings) and IEEE Green Computing & Communications (GreenCom) and IEEE Cyber, Physical & Social Computing (CPSCom) and IEEE Smart Data (SmartData) and IEEE Congress on Cybermatics (Cybermatics);2023-12-17

3. FedSKG: Self-supervised Federated Learning with Structural Knowledge of Global Model;2023 IEEE 29th International Conference on Parallel and Distributed Systems (ICPADS);2023-12-17

4. A Federated Multi-Modal Learning Framework Powered by Distributed Ledgers for Cyber-safe and Efficient UAV Delivery Systems;2023 IEEE International Conference on Data Mining Workshops (ICDMW);2023-12-04

5. Opponent Modeling Based Dynamic Resource Trading for UAV-Assisted Edge Computing;2023 IEEE 98th Vehicular Technology Conference (VTC2023-Fall);2023-10-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3