Power System Dominant Instability Mode Identification Based on Improved Multi-Head Attention and CNN

Author:

Wang Changjiang1,Zhang Qianlong1,Zhou Qinyong2,Zhang Jian2,Sun Yujiao2,Wei Mingkui3,Zhong Shicheng1

Affiliation:

1. Northeast Electric Power University,Department of Electrical Engineering,Jilin,China

2. China Electric Power Research Institute,State Key Laboratory of Power Grid Safety and Energy Conservation,Beijing,China

3. State Grid Corporation of China,Southwest Branch,Chengdu,China

Publisher

IEEE

Reference7 articles.

1. Primary Exploration of Six Essential Factors in New Power System;Kang;Power System Technology,2023

2. Method identifying voltage instability and angle instability based on tracking thevenin equivalent parameters;Tang,2009

3. Coupling mechanism analysis and coupling strength evaluation index of transient power angle stability;Li,2021

4. A graph attention networks-based model to distinguish the transient rotor angle instability and short-term voltage instability in power systems

5. Semi-supervised learning framework of dominant instability mode identification via fusion of virtual adversarial training and mean teacher model;Zhang,2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3