Federated Clustering for Electricity Consumption Pattern Extraction
Author:
Affiliation:
1. Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong
2. Power Systems Laboratory, ETH Zurich, Zurich, Switzerland
3. College of Control Science and Engineering, Zhejiang University, Hangzhou, China
Funder
National Key Research and Development Program of China
Swiss Centre for Competence in Energy Research on the Future Swiss Electrical Infrastructure
Swiss Federal Office of Energy
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Subject
General Computer Science
Link
http://xplorestaging.ieee.org/ielx7/5165411/9761268/09693930.pdf?arnumber=9693930
Reference53 articles.
1. Clustering analysis of residential electricity demand profiles
2. Federated Reinforcement Learning for Energy Management of Multiple Smart Homes With Distributed Energy Resources
3. Federated matrix factorization: Algorithm, design and application to data clustering;wang;arXiv 2002 04930,2020
4. Communication-efficient learning of deep networks from decentralized data;mcmahan;Proc Int Conf Artif Intell Stat,2017
5. Federated Machine Learning
Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A generalizable approach to imbalanced classification of residential electric space heat;Environmental Research: Infrastructure and Sustainability;2024-08-21
2. When Federated Learning Meets Oligopoly Competition: Stability and Model Differentiation;IEEE Internet of Things Journal;2024-08-15
3. Identificando perfis de clientes de um ISP propensos ao Churn ao empregar dados do protocolo TR-069 nos algoritmos de ML;Revista Brasileira de Computação Aplicada;2024-08-05
4. An Improved Parallel Clustering Method Based on K-Means for Electricity Consumption Patterns;Journal of Advanced Computational Intelligence and Intelligent Informatics;2024-07-20
5. Research on key privacy protection technologies supporting flexible distributed resource layered aggregation transactions;International Conference on Computer Network Security and Software Engineering (CNSSE 2024);2024-06-06
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3