NFDLM: A Lightweight Network Flow based Deep Learning Model for DDoS Attack Detection in IoT Domains
Author:
Affiliation:
1. Indian Institute of Information Technology,Allahabad,India
2. THM University of Applied Sciences,Department of Business Informatics,Friedberg,Germany
Publisher
IEEE
Link
http://xplorestaging.ieee.org/ielx7/9817098/9817144/09817297.pdf?arnumber=9817297
Reference37 articles.
1. Machine Learning-Based IoT-Botnet Attack Detection with Sequential Architecture
2. Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy
3. A Two-Layer Dimension Reduction and Two-Tier Classification Model for Anomaly-Based Intrusion Detection in IoT Backbone Networks
4. SMOTE: Synthetic Minority Over-sampling Technique
5. Deep learning for cyber security intrusion detection: Approaches, datasets, and comparative study
Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. HMS-IDS: Threat Intelligence Integration for Zero-Day Exploits and Advanced Persistent Threats in IIoT;Arabian Journal for Science and Engineering;2024-07-10
2. TMAP: A Threat Modeling and Attack Path Analysis Framework for Industrial IoT Systems (A Case Study of IoM and IoP);Arabian Journal for Science and Engineering;2024-06-18
3. Impact of Latent Space Dimension on IoT Botnet Detection Performance: VAE-Encoder Versus ViT-Encoder;2024 3rd International Conference for Innovation in Technology (INOCON);2024-03-01
4. Deep Learning Method for Detecting and Mitigating Distributed Denial of Service Attacks with Imbalanced Data;2024 International Conference on Integrated Circuits and Communication Systems (ICICACS);2024-02-23
5. A critical review of feature selection methods for machine learning in IoT security;International Journal of Communication Networks and Distributed Systems;2024
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3