ARSC-Net: Adventitious Respiratory Sound Classification Network Using Parallel Paths with Channel-Spatial Attention
Author:
Funder
National Natural Science Foundation of China
Central South University
Publisher
IEEE
Link
http://xplorestaging.ieee.org/ielx7/9669261/9669139/09669787.pdf?arnumber=9669787
Reference33 articles.
1. Noise Masking Recurrent Neural Network for Respiratory Sound Classification
2. LungBRN: A Smart Digital Stethoscope for Detecting Respiratory Disease Using bi-ResNet Deep Learning Algorithm
3. An automated lung sound preprocessing and classification system based onspectral analysis methods;serbes;International Conference on Biomedical and Health Informatics,2017
4. Automatic Detection of Patient with Respiratory Diseases Using Lung Sound Analysis
5. Deep Neural Network for Respiratory Sound Classification in Wearable Devices Enabled by Patient Specific Model Tuning
Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Fourier Decomposition-Based Automated Classification of Healthy, COPD, and Asthma Using Single-Channel Lung Sounds;IEEE Transactions on Medical Robotics and Bionics;2024-08
2. Auscultation-Based Pulmonary Disease Detection through Parallel Transformation and Deep Learning;Bioengineering;2024-06-08
3. GaP-Aug: Gamma Patch-Wise Correction Augmentation Method for Respiratory Sound Classification;ICASSP 2024 - 2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP);2024-04-14
4. Multi-View Spectrogram Transformer for Respiratory Sound Classification;ICASSP 2024 - 2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP);2024-04-14
5. An Enhanced Deep Learning Approach for Disease Classification from Respiratory Sound;2024 2nd International Conference on Device Intelligence, Computing and Communication Technologies (DICCT);2024-03-15
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3