A Graph Convolutional Shrinkage Network-based Fault Diagnosis Method for Industrial Process
Author:
Affiliation:
1. College of Information Science & Technology, Beijing University of Chemical Technology,Beijing,China,100029
2. Macao Polytechnic University,Faculty of Applied Sciences,Macao SAR,P.R. China,999078
Funder
National Key R&D Program of China
National Natural Science Foundation of China
Fundamental Research Funds for the Central Universities
Publisher
IEEE
Link
http://xplorestaging.ieee.org/ielx7/10165684/10165785/10165809.pdf?arnumber=10165809
Reference15 articles.
1. Deep Residual Shrinkage Networks for Fault Diagnosis
2. A set of new Chebyshev kernel functions for support vector machine pattern classification
3. A novel AdaBoost ensemble model based on the reconstruction of local tangent space alignment and its application to multiple faults recognition
4. Locality preserving dense graph convolutional networks with graph context-aware node representations
5. Quantifying colocalization by correlation: The Pearson correlation coefficient is superior to the Mander's overlap coefficient
Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A Hybrid MTS Anomaly Detection Method Based on Reconstruction and Adaptive Spatial-Temporal Graph Network;2024 IEEE 13th Data Driven Control and Learning Systems Conference (DDCLS);2024-05-17
2. Deep Graph Convolutional Neural Network for Fault Diagnosis of Complex Industrial Processes;2023 2nd International Conference on Artificial Intelligence, Human-Computer Interaction and Robotics (AIHCIR);2023-12-08
3. Research on Industrial Process Fault Diagnosis Based on Deep Spatio-Temporal Fusion Graph Convolutional Network;2023
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3