A Compressed Unsupervised Deep Domain Adaptation Model for Efficient Cross-Domain Fault Diagnosis
Author:
Affiliation:
1. School of Informatics, Xiamen University, Xiamen, China
2. Department of Teleinformatics Engineering, Federal University of Ceará, Fortaleza, Brazil
Funder
National Natural Science Foundation of China
National Key Research and Development Program of China
Brazilian National Council for Scientific and Technological Development-CNPq
FCT/MCTES
EU funds
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Subject
Electrical and Electronic Engineering,Computer Science Applications,Information Systems,Control and Systems Engineering
Link
http://xplorestaging.ieee.org/ielx7/9424/10116046/09797052.pdf?arnumber=9797052
Reference30 articles.
1. An adaptive deep transfer learning method for bearing fault diagnosis
2. Diagnosing Rotating Machines With Weakly Supervised Data Using Deep Transfer Learning
3. Intelligent Fault Diagnosis for Rotary Machinery Using Transferable Convolutional Neural Network
4. Deep conditional adaptation networks and label correlation transfer for unsupervised domain adaptation
5. Deep learning;lecun;Nature,2015
Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Prior knowledge embedding convolutional autoencoder: A single-source domain generalized fault diagnosis framework under small samples;Computers in Industry;2025-01
2. DPICEN: Deep physical information consistency embedded network for bearing fault diagnosis under unknown domain;Reliability Engineering & System Safety;2024-12
3. AVATAR: Adversarial self-superVised domain Adaptation network for TARget domain;Expert Systems with Applications;2024-12
4. Physics-Constrained Transfer Learning for Self-Assessment of Terahertz Thickness Measurement of Thermal Barrier Coatings;IEEE Transactions on Industrial Informatics;2024-09
5. Cloud-edge collaborative transfer fault diagnosis of rotating machinery via federated fine-tuning and target self-adaptation;Expert Systems with Applications;2024-09
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3