Self-Supervised Deep Domain-Adversarial Regression Adaptation for Online Remaining Useful Life Prediction of Rolling Bearing Under Unknown Working Condition
Author:
Affiliation:
1. School of Computer and Information Engineering, Henan Normal University, Xinxiang, China
2. Department of Mechanical Engineering, University of Manitoba, Winnipeg, MB, Canada
Funder
National Natural Science Foundation of China
Henan Province Technologies Research and Development Project of China
NSFC Development Funding of Henan Normal University
University of Manitoba
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Subject
Electrical and Electronic Engineering,Computer Science Applications,Information Systems,Control and Systems Engineering
Link
http://xplorestaging.ieee.org/ielx7/9424/9989328/09769904.pdf?arnumber=9769904
Reference28 articles.
1. Self-Supervised Feature Learning by Learning to Spot Artifacts
2. Transfer learning using deep representation regularization in remaining useful life prediction across operating conditions
3. Toward Self-Supervised Feature Learning for Online Diagnosis of Multiple Faults in Electric Powertrains
4. Revisiting Self-Supervised Visual Representation Learning
5. Contrastive Adversarial Domain Adaptation for Machine Remaining Useful Life Prediction
Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Enhancing prognostics for sparse labeled data using advanced contrastive self-supervised learning with downstream integration;Engineering Applications of Artificial Intelligence;2024-12
2. Research on maintenance cycle prediction for energy equipment with limited and sensitive data;Engineering Failure Analysis;2024-10
3. A novel unsupervised adaptive density-based clustering filter for remaining useful life prediction of bearings;Measurement Science and Technology;2024-09-13
4. Optimized Online Remaining Useful Life Prediction for Nuclear Circulating Water Pump Considering Time-Varying Degradation Mechanism;IEEE Transactions on Industrial Informatics;2024-09
5. Advancing RUL prediction in mechanical systems: A hybrid deep learning approach utilizing non-full lifecycle data;Advanced Engineering Informatics;2024-08
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3