Deep Clustering via Center-Oriented Margin Free-Triplet Loss for Skin Lesion Detection in Highly Imbalanced Datasets
Author:
Affiliation:
1. Department of Electrical and Electronics Engineering, Amasya University, Amasya, Turkey
2. Department of Electrical and Electronics Engineering, Bilkent University, Ankara, Turkey
Funder
TUBA GEBIP 2015
BAGEP 2017
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Subject
Health Information Management,Electrical and Electronic Engineering,Computer Science Applications,Health Informatics
Link
http://xplorestaging.ieee.org/ielx7/6221020/9882959/09810181.pdf?arnumber=9810181
Reference67 articles.
1. Skin Lesion Synthesis with Generative Adversarial Networks
2. A GAN-based image synthesis method for skin lesion classification
3. Gabor wavelet-based deep learning for skin lesion classification
4. Robust Feature Spaces from Pre-Trained Deep Network Layers for Skin Lesion Classification
5. Pre-trained CNN based deep features with hand-crafted features and patient data for skin lesion classification;yildirim yayilgan;Lecture Notes Comput Sci,2020
Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Systematic review of approaches to detection and classification of skin cancer using artificial intelligence: Development and prospects;Computers in Biology and Medicine;2024-08
2. Timely detection of skin cancer: An AI-based approach on the basis of the integration of Echo State Network and adapted Seasons Optimization Algorithm;Biomedical Signal Processing and Control;2024-08
3. A clustering-based adaptive undersampling ensemble method for highly unbalanced data classification;Applied Soft Computing;2024-07
4. A Deep Learning Based Critical Analysis Of Skin Lesion Classification;2024 International Conference on Advances in Modern Age Technologies for Health and Engineering Science (AMATHE);2024-05-16
5. An enhanced skin lesion detection and classification model using hybrid convolution-based ensemble learning model;Research on Biomedical Engineering;2024-04-30
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3