Research on Short-Term Load Forecasting Model Based on CEEMDAN-CNN-LSTM-AM

Author:

Yang YaLong1,Sun WeiHao1,Zhang GongQuan1

Affiliation:

1. School of Electronic and Information Engineering,Anhui Jianzhu University Anhui Province Key Laboratory of Intelligent Building and Building Energy Saving,Hefei,Anhui,China,230601

Publisher

IEEE

Reference27 articles.

1. Short-term load forecasting model based on autoencoder and PSOA-CNN;wenqing;Journal of Shandong University (Natural Science),2019

2. A power load prediction method of associated industry chain production resumption based on multi-task LSTM;qing;Energy Reports,2022

3. A Novel Deep Learning Approach for Short and Medium-Term Electrical Load Forecasting Based on Pooling LSTM-CNN Model

4. A Short-Term Household Load Forecasting Framework Using LSTM and Data Preparation

5. Hourly day-ahead solar irradiance prediction using weather forecasts by LSTM;xiangyun;Energy,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3