Breast Cancer Detection Using Deep Learning: An Investigation Using the DDSM Dataset and a Customized AlexNet and Support Vector Machine
Author:
Affiliation:
1. Faculty of Computer Science and Information Technology, Superior University, Lahore, Pakistan
2. Department of Computer Science, National University of Technology, Islamabad, Pakistan
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Subject
General Engineering,General Materials Science,General Computer Science,Electrical and Electronic Engineering
Link
http://xplorestaging.ieee.org/ielx7/6287639/10005208/10239136.pdf?arnumber=10239136
Reference23 articles.
1. A novel deep learning based framework for the detection and classification of breast cancer using transfer learning
2. Computer‐aided diagnosis of breast ultrasound images using ensemble learning from convolutional neural networks
3. A new CNN architecture for efficient classification of ultrasound breast tumor images with activation map clustering based prediction validation
4. A Novel Deep-Learning Model for Automatic Detection and Classification of Breast Cancer Using the Transfer-Learning Technique
Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Automated breast cancer diagnosis optimized with higher-order attribute-enhancing heterogeneous graph neural networks using mammogram images;Biomedical Signal Processing and Control;2024-11
2. Low-Cost Early Detection Device for Breast Cancer based on Skin Surface Temperature;IT Journal Research and Development;2024-07-23
3. A Novel Approach for Detecting Breast Cancer Cells and Comparison using DeepLearning Techniques;2024 International Conference on Advances in Computing, Communication and Applied Informatics (ACCAI);2024-05-09
4. Innovative Breast Cancer Detection Through Mammogram Analysis;2024 International Conference on Smart Systems for applications in Electrical Sciences (ICSSES);2024-05-03
5. RM-DenseNet: An Enhanced DenseNet Framework with Residual Model for Breast Cancer Classification Using Mammographic Images;2024 2nd International Conference on Advancement in Computation & Computer Technologies (InCACCT);2024-05-02
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3