Intelligent Machine Fault Diagnosis Using Convolutional Neural Networks and Transfer Learning
Author:
Affiliation:
1. School of Mechanical and Automotive Engineering, Shanghai University of Engineering Science, Shanghai, China
Funder
National Natural Science Foundation of China
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Subject
General Engineering,General Materials Science,General Computer Science,Electrical and Electronic Engineering
Link
http://xplorestaging.ieee.org/ielx7/6287639/9668973/09770836.pdf?arnumber=9770836
Reference46 articles.
1. Deep neural networks: A promising tool for fault characteristic mining and intelligent diagnosis of rotating machinery with massive data
2. LSTM-GAN-AE: A Promising Approach for Fault Diagnosis in Machine Health Monitoring
3. A spiking neural network-based approach to bearing fault diagnosis
4. CNN-Based Fault Detection for Smart Manufacturing
5. A novel intelligent fault diagnosis method of rolling bearing based on two-stream feature fusion convolutional neural network
Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Vibration-based SHM of railway steel arch bridge with orbit-shaped image and wavelet-integrated CNN classification;Engineering Structures;2024-09
2. Fault diagnosis for cross-building energy systems based on transfer learning and model interpretation;Journal of Building Engineering;2024-08
3. A Deep Approach to Deep Fake Detection;International Journal of Scientific Research in Science, Engineering and Technology;2024-04-30
4. Applications of convolutional neural networks in fault diagnosis of mechanical-electrical-hydraulic systems: a review;Fourth International Conference on Mechanical Engineering, Intelligent Manufacturing, and Automation Technology (MEMAT 2023);2024-04-01
5. Machine Fault Diagnosis Using EMD-Gammatone Texture Representation and A Lightweight Self-Attention SqueezeNet;2024 IEEE International Conference on Big Data and Smart Computing (BigComp);2024-02-18
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3