MLTs-ADCNs: Machine Learning Techniques for Anomaly Detection in Communication Networks
Author:
Affiliation:
1. Department of Electronic and Electrical Engineering, Brunel University London, London, U.K.
2. Department of Computer Systems Techniques, Middle Technical University, Baghdad, Iraq
Funder
Brunel University London
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Subject
General Engineering,General Materials Science,General Computer Science,Electrical and Electronic Engineering
Link
http://xplorestaging.ieee.org/ielx7/6287639/9668973/09867983.pdf?arnumber=9867983
Reference43 articles.
1. Explaining information gain and information gain ratio in information theory;li;ICIC Exp Lett,2013
2. On the Feature Selection and Classification Based on Information Gain for Document Sentiment Analysis
3. Advanced Feature-Selection-Based Hybrid Ensemble Learning Algorithms for Network Intrusion Detection Systems
4. Hybrid approach to intrusion detection in fog-based IoT environments
5. A novel scalable intrusion detection system based on deep learning
Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Exploring Machine Learning Solutions for Anomaly Detection in 6G Communication Systems;Advances in Wireless Technologies and Telecommunication;2024-06-28
2. Meta‐analysis and systematic review for anomaly network intrusion detection systems: Detection methods, dataset, validation methodology, and challenges;IET Networks;2024-06-18
3. Federated Learning with Kalman Filter for Intrusion Detection in IoT Environment;2024 IEEE 8th Energy Conference (ENERGYCON);2024-03-04
4. A Review of Artificial Intelligence Techniques for Improved Cloud and IoT Security;Advances in Information Security, Privacy, and Ethics;2024-02-23
5. Robust Deep Regressive Neural Learning Based Intrusion Detection and Prevention in Wireless Communication;2023 International Conference on Emerging Research in Computational Science (ICERCS);2023-12-07
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3