On the Performance of Deep Transfer Learning Networks for Brain Tumor Detection Using MR Images
Author:
Affiliation:
1. Department of Electronics and Communication Engineering, Khulna University of Engineering & Technology (KUET), Khulna, Bangladesh
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Subject
General Engineering,General Materials Science,General Computer Science,Electrical and Electronic Engineering
Link
http://xplorestaging.ieee.org/ielx7/6287639/9668973/09785791.pdf?arnumber=9785791
Reference37 articles.
1. Classification and segmentation of brain tumor using Adaboost classifier
2. Meta-Learning in Decision Tree Induction
3. Comparison of artificial neural network, random forest and random perceptron forest for forecasting the spatial impurity distribution
4. A comparison of random forest based algorithms: random credal random forest versus oblique random forest
5. Brain tumor classification for MR images using transfer learning and fine-tuning
Cited by 51 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A hyperdimensional framework: Unveiling the interplay of RBP and GSN within CNNs for ultra-precise brain tumor classification;Biomedical Signal Processing and Control;2024-10
2. Advancements in brain tumor analysis: a comprehensive review of machine learning, hybrid deep learning, and transfer learning approaches for MRI-based classification and segmentation;Multimedia Tools and Applications;2024-09-12
3. Accurate MRI-Based Brain Tumor Diagnosis: Integrating Segmentation and Deep Learning Approaches;Applied Sciences;2024-08-19
4. Automated evaluation and parameter estimation of brain tumor using deep learning techniques;Neural Computing and Applications;2024-08-16
5. AG-MSTLN-EL: A Multi-source Transfer Learning Approach to Brain Tumor Detection;Journal of Imaging Informatics in Medicine;2024-07-26
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3