ADD-Net: An Effective Deep Learning Model for Early Detection of Alzheimer Disease in MRI Scans

Author:

Fareed Mian Muhammad Sadiq1ORCID,Zikria Shahid2,Ahmed Gulnaz1,Mui-Zzud-Din 3,Mahmood Saqib4,Aslam Muhammad5,Jillani Syeda Fizzah6,Moustafa Ahmad7,Asad Muhammad8

Affiliation:

1. Institute of Artificial Intelligence and Marine Robots, Dalian Maritime University, Dalian, China

2. Department of Computer Science, Information Technology University, Lahore, Pakistan

3. Department of Computer Science, Ghazi University, Dera Ghazi Khan, Pakistan

4. Department of Computer Science, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan

5. School of Computing Engineering and Physical Sciences, University of the West of Scotland, Glasgow, U.K

6. Department of Physics, Physical Sciences Building, Aberystwyth University, Aberystwyth, U.K

7. Department of Computer Science, Nagoya Institute of Technology, Nagoya, Japan

8. Graduate School of Information Science and Technology, The University of Tokyo, Tokyo, Japan

Publisher

Institute of Electrical and Electronics Engineers (IEEE)

Subject

General Engineering,General Materials Science,General Computer Science,Electrical and Electronic Engineering

Reference58 articles.

1. Empirical evaluation of rectified activations in convolutional network;xu;arXiv 1505 00853,2015

2. Cost-sensitive learning of deep feature representations from imbalanced data;khan;IEEE Trans Neural Netw Learn Syst,2017

3. Deep learning type convolution neural network architecture for multiclass classification of Alzheimer’s disease;battineni;Bioimaging,2021

4. Efficient image classification for Alzheimer’s disease prediction using capsule network;vasukidevi;Annals of the Romanian Society for Cell Biology,2021

5. Detection of Alzheimer’s disease (AD) in MRI images using deep learning;pradhan;International Journal of Engineering Research and Technology (IJERT),2021

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3