Symptom Based Explainable Artificial Intelligence Model for Leukemia Detection

Author:

Hossain Mohammad Akter1,Islam A. K. M. Muzahidul1ORCID,Islam Salekul1ORCID,Shatabda Swakkhar1,Ahmed Ashir2

Affiliation:

1. Department of Computer Science and Engineering, United International University, Dhaka, Bangladesh

2. Department of Advanced Information Technology, Kyushu University, Fukuoka, Japan

Funder

Institute of Advanced Research (IAR), United International University (UIU), Dhaka, Bangladesh

Publisher

Institute of Electrical and Electronics Engineers (IEEE)

Subject

General Engineering,General Materials Science,General Computer Science,Electrical and Electronic Engineering

Reference39 articles.

1. Scikit-learn: Machine learning in Python;pedregosa;J Mach Learn Res,2011

2. Feature selection using lasso;fonti;VU Amsterdam Research Paper in Business Analytics,2017

3. An Effective Leukemia Prediction Technique Using Supervised Machine Learning Classification Algorithm

4. Comparison of machine and deep learning for the classification of cervical cancer based on cervicography images

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Leukemia Net: Integrating attention depth wise Separable network-aided stacked feature pooling with weighted recurrent neural network-based leukemia detection model;Biomedical Signal Processing and Control;2024-10

2. Local/Global explainability empowered expert-involved frameworks for essential tremor action recognition;Biomedical Signal Processing and Control;2024-09

3. Explainable Artificial Intelligence based ML Models for Heart Disease Prediction;2024 3rd International Conference on Computational Modelling, Simulation and Optimization (ICCMSO);2024-06-14

4. RETRACTED: ODRNN: Optimized Deep Recurrent Neural Networks for Automatic Detection of Leukaemia;Egyptian Informatics Journal;2024-06

5. Enhancing Acute Lymphoblastic Leukemia Classification with a Rapid and Effective CNN Model;2024 Third International Conference on Distributed Computing and Electrical Circuits and Electronics (ICDCECE);2024-04-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3