Broken Bar Fault Detection and Diagnosis Techniques for Induction Motors and Drives: State of the Art
Author:
Affiliation:
1. Petroleum Pipelines Company, Mostorod, Kaliubia, Cairo, Egypt
2. Electrical Power Engineering Department, Faculty of Engineering, Cairo University, Giza, Cairo, Egypt
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Subject
General Engineering,General Materials Science,General Computer Science,Electrical and Electronic Engineering
Link
http://xplorestaging.ieee.org/ielx7/6287639/9668973/09862996.pdf?arnumber=9862996
Reference153 articles.
1. Validation of a Faulted Rotor Induction Machine Model With an Insightful Geometrical Interpretation of Physical Quantities
2. Detection of Broken Rotor Bars in Nonlinear Startups of Inverter-Fed Induction Motors
3. A Histogram of Oriented Gradients Approach for Detecting Broken Bars in Squirrel-Cage Induction Motors
4. An On-Line Condition Monitoring System for Incipient Fault Detection in Double-Cage Induction Motor
5. Reliable Airgap Search Coil Based Detection of Induction Motor Rotor Faults Under False Negative Motor Current Signature Analysis Indications
Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. FPGA real-time implementation of welch transform for diagnosis of broken rotor bars in induction motors;Electrical Engineering;2024-06-20
2. Broken Rotor Bar Detection Based on Steady-State Stray Flux Signals Using Triaxial Sensor with Random Positioning;Sensors;2024-05-12
3. Enhanced Multi-Synchro-Squeezing Transform for Fault Diagnosis in Induction Machine Based on Third-Order Energy Operator of Stator Current Signature;IEEE Access;2024
4. Analysis of a Three-Phase Induction Motor with a Double–Triple-Layer Stator Winding Configuration Operating with Broken Rotor Bar Faults;Machines;2023-11-14
5. Detection of Broken Rotor Bars in Cage Induction Motors Using Machine Learning Methods;Sensors;2023-11-09
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3