Social Recommendation for Social Networks Using Deep Learning Approach: A Systematic Review, Taxonomy, Issues, and Future Directions
Author:
Affiliation:
1. Faculty of Computing, Universiti Teknologi Malaysia, Johor Bahru, Johor, Malaysia
2. Malaysia–Japan International Institute of Technology, Universiti Teknologi Malaysia, Kuala Lumpur, Malaysia
Funder
Ministry of Higher Education through the Fundamental Research Grant Scheme
Faculty of Informatics and Management, University of Hradec Králové, through the Specific Research Project (SPEV), ‘‘Smart Solutions in Ubiquitous Computing Environments’’
student Michal Dobrovolny in consultations regarding application aspects
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Subject
General Engineering,General Materials Science,General Computer Science,Electrical and Electronic Engineering
Link
http://xplorestaging.ieee.org/ielx7/6287639/10005208/10128133.pdf?arnumber=10128133
Reference108 articles.
1. Personal recommendation using deep recurrent neural networks in NetEase
2. Personalized Deep Learning for Tag Recommendation
3. Systematic literature reviews in software engineering – A systematic literature review
4. On Deep Learning for Trust-Aware Recommendations in Social Networks
5. Embedding-based News Recommendation for Millions of Users
Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Social Recommender System Based on CNN Incorporating Tagging and Contextual Features;Journal of Cases on Information Technology;2024-01-07
2. Analysis of Recommender System Using Generative Artificial Intelligence: A Systematic Literature Review;IEEE Access;2024
3. Recommender Systems and Analysis of Large-Scale Online Social Networks;2023 International Conference on Advances in Computation, Communication and Information Technology (ICAICCIT);2023-11-23
4. A Systematic Literature Review: Metaverse in Educational Learning for TVET Student;2023 IEEE International Conference on Computing (ICOCO);2023-10-09
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3